Effects of recombinant murine tumor necrosis factor-alpha on immune function.

1990
https://researcherprofiles.org/profile/1451207
2307839
Gordon C, Wofsy D
Abstract

TNF-alpha is a macrophage-derived cytokine with diverse biologic activities, including potent immunomodulatory effects. In vitro studies have implied that TNF-alpha has predominantly proinflammatory and immunostimulatory effects, but paradoxically in vivo studies have demonstrated that administration of TNF-alpha suppresses murine lupus. To assess the effects of TNF-alpha on immune function in normal mice, we treated C57BL/6 mice with recombinant murine TNF-alpha (10 micrograms i.p.) or PBS on alternate days for up to 8 wk. Administration of TNF-alpha decreased the percentage of splenic T and B cells and increased the percentage of splenic macrophages without significantly altering the total number of mononuclear cells. Administration of TNF-alpha also caused progressive inhibition of splenic lymphocyte function, out of proportion to the quantitative reduction in B and T cells. After 8 wk of therapy, the proliferative responses of splenic lymphocytes to Con A, PHA, and LPS were reduced by 100, 90, and 60%, respectively, in treated mice compared with control mice. The reduction in T cell proliferation was due primarily to alteration of accessory cell function rather than direct inhibition of T cell function. Treatment with TNF-alpha markedly inhibited T cell cytotoxicity induced by immunization with allogenic target cells, and it virtually ablated NK cell activity. Inhibition of these in vitro tests of lymphocyte function correlated with inhibition of delayed type hypersensitivity in vivo. In contrast, treatment with TNF-alpha did not impair humoral immunity. These findings imply that TNF-alpha may affect cell-mediated immunity more profoundly than humoral immunity. This observation may be relevant to the mechanism whereby TNF-alpha suppresses murine lupus.

Journal Issue
Volume 144 of Issue 5